The correct options are
A For any value of A,B and C (except C=0)
B If A=−B,C=2B and amplitude =|B√2|
D If A=B,C=2B and amplitude =|B|
If A=−B & C=2B
x=B(cos2ωt−sin2ωt)+Bsin2ωt
⇒x=Bcos2ωt+Bsin2ωt
By multiplying and dividing with √2 on both sides ,
x=√2×B×[1√2cos2ωt+1√2sin2ωt]
∵sin(A+B)=sinAcosB+cosAsinB
we can write the above equation as,
x=B√2[sin(2ωt+π4)]
This is an expression for particle executing SHM.
Amplitude of SHM=|B√2|
If A=B,C=2B,
x=B(sin2ωt+cos2ωt)+Bsin2ωt=B+Bsin2ωt
Comparing the above equation with x=x0+A′sinω′t,
We can say that it is also expression for SHM about point x=B.
The function oscillates between x=0 & x=2B with an amplitude B.
If A=B & C=0, we get x=B
This is clearly not an expression for SHM.
Hence, options (b) and (d) are the correct answers.