wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

X and Y are points on the side LN of the triangle LMN such that LX=XY=YN.Through X, a line is drawn parallel to LM to meet MN at Z. Prove that ar(LZY)=ar(MZYX).
1213743_60b9ee66e99649f69f59225da03aa302.png

Open in App
Solution

LX=XY=YN(given)LMXZDrawZLrLYInΔLZYXTYZarΔLZY=12(LY)XZL=(2XY)×12×(ZL)=(ZL)×(XY)Inquadrilateral(MZYX)=(base×height)ar(MZYX)=(XY)×(ZL)Hence,ar(ΔLZY)=arMZYXproved.
1216565_1213743_ans_edc56df3b5b148fc9348a2ad55b8c9cc.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon