x and y−coordinates of a particle moving in x−y plane are, x=1−2t+t2 and y=4−4t+t2 For the given situation match the following two columns.
Open in App
Solution
x=1−2t+t2 y=4−4t+t2 It crosses y−axis when x=0 therefore, 1−2t+t2=0 this gives t=1s at t=1,vy=dydt=−4+2t=−2 A→2 when y=0 4−4t+t2=0 therefore,t=2 At t=2 vx=dxdt=−2+2t=2 B→1 at t=0 vx=−2 vy=−4 therefore,v=√(v2x+v2y) v=√(20) C→4 ax=d2xdt2=1 ay=d2ydt2=1 a=√a2x+a2y a=√2 D→4