x23(Differentiate with respect to x, using first principle)
Find derivative by first principle method
Let f(x)=x23
f′(x)=limh→0(x+h)23−x23h
[f′(x)=limh→0f(x+h)−f(x)h]
=limh→0x23(1+hx)23−x23h
=limh→0x23⎡⎢
⎢⎣(1+hx)23−1⎤⎥
⎥⎦h
=limh→0x23[1+23hx−19h2x2+…−1]h
⎡⎢
⎢
⎢⎣(1+x)n=1+nx+n(n−1)2!x2+…+n(n−1)…(n−r+1)r!xr⎤⎥
⎥
⎥⎦
=limh→x23[23x−h9x2+…]
Now, apply the limit, we get
f′(x)=23x−13
Hence the required answer is 23x−13