x=eθ(θ+1θ),y=eθ(θ+1θ)
∵ x=eθ(θ+1θ) and y=eθ(θ+1θ)∴ dxdθ=ddθ[eθ(θ+1θ)]=eθ.ddθ(θ+1θ)+(θ+1θ)ddθeθ=eθ(1−1θ2)+(θ+1θ2)eθ=eθ(θ2−1+θ3+θθ2) …(i)
and dydθ=ddθ[eθ(θ−1θ)]=eθ.ddθ(θ−1θ)+ddθeθ(θ−1θ)=eθ(1−1θ2)+(θ+1θ)eθddθ(−θ)=eθ[θ2+1θ2−θ211θ]=e|−θ[θ2+1−θ3+θθ2] …(ii)∴ dydx=dydθdxdθ=eθ(θ2+1−θ3+θθ2)eθ(θ2−1+θ3+θθ2)=e−2θ(−θ3+θ2+θ+1θ3+θ2+θ−1)