The correct option is
D 20
If 24! ends in n zeroes, 25! will end in (n+2) zeroes.
Generalising this to all multiples of 25, they satisfy this condition: if (x)! ends with n zeroes then (x+1)! ends with (n+2) zeroes.
However, if 124! ends in n zeroes, 125! will end in (n+3) zeroes.
Generalising this to all multiples of 125, they do not satisfy the condition: if (x)! ends with n zeroes then (x+1)! ends with (n+2) zeroes.
Infact, they end with (n+3) or (n+4) zeroes.
Therefore, the number of favourable cases between 24 to 626 can be represented as:
(Number of multiples of 25 - Number of multiples of 125)
25 - 5 = 20.