The correct option is A (mCr)(nCs)m+nCr+s
We have P(X=rX+Y=r+s)=P[(X=r)∩(X+Y=r+s)]P(X+Y=r+s)
=P[(X=r)∩(Y=s)]P(X+Y=r+s)=P(X=r)P(Y=s)P(X+Y=r+s)
P(X+Y=r+s)=r+s∑k=0P[(X=k)∩(Y=r+s−k)]
=r+s∑k=0(nCk.pk.qn−k)(mCr+s−k.pr+s−k.qm−r−s+k)
=pr+s.qm+n−r−s.r+s∑k=0(nCk)(mCr+s−k)
Now the last sum is the expression for the number of ways of choosing r+s persons out of n men and m women, which is m+nCr+s.
Therefore P(X+Y=r+s)=m+nCr+s.pr+s.qm+n−r−s so that
P(X=rX+Y=r+s)=(mCr.pr.qn−r)(nCs.ps.qm−s)m+nCr+s.pr+s.qm+n−r−s=(mCr)(nCs)m+nCr+s