x=nπ+3π4 or x=mπ+tan−112, where m, n∈I
The given equation is
2tan2x+tan x−1=0
⇒(tan x+1)(2 tan x−1)=0
⇒tan x=−1 or tanx=12
⇒ tan x=tan 3π4 or tan x=tan(tan−112)
⇒x=nπ+3π4 or x=mπ+tan−112, where m, n∈I.
Prove x=nπ+(−1)n.π2 or x=(nπ+3π4), where m, n∈I
Prove x=nπ2 or x=(mπ2+3π8), where m, n∈I
The value of x which satisfy √17sec2x+16(12tanxsecx−1)=2tan(1+4sinx) is