wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x=secθtanθ,y=cosecθ+cotθ
Prove: xy+1=yx

Open in App
Solution

Given,
x=secθtanθ,y=cosecθ+cotθ.
Now, xy+1
=(secθtanθ)(cosecθ+cotθ)
=secθ.cosecθ+secθ.cotθtanθ.cosecθ1+1
=1sinθ.cosθ+cosecθsecθ
=sin2θ+cos2θsinθ.cosθ+cosecθsecθ [ Since sin2θ+cos2θ=1]
=tanθ+cotθ+cosecθsecθ.
=(coseθ+cotθ)(secθtanθ)
=yx.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon