The correct option is D −π+42
x=tcost
dxdt=−tsint+cost
Also given, y=t+sint
dydt=1+cost
⇒dxdy=−tsint+cost1+cost
⇒(d2xdy2)=ddt(dxdy)×dtdy
(d2xdy2)=[ddt(−tsint+cost1+cost)]11+cost
(d2xdy2)=[−2sint−tcost−sintcost−t(1+cost)2]11+cost
Now, (d2xdy2)t=π2=−π2−2=−(π+4)2