Given x(x−1)dydx−(x−2)y=x3(2x−1)
On rearranging the terms we get
dydx−(x−2)yx(x−1)=x3(2x−1)x(x−1)
This is in the form of dydx+P(x)y=Q(x) which can be solved using integration factor(IF) method
IF=e∫P(x)dx=e∫−(x−2)x(x−1)dx=e∫⎛⎝1x−1−2x⎞⎠dx=eln(x−1)−2lnx=eln(x−1)x2=(x−1)x2
Solution is in the form of y.ePdx=[QePdx]dx+C
(x−1)x2y=∫(x3(2x−1)x(x−1)×(x−1)x2)dx+c
⇒(x−1)y=x2(∫(2x−1)dx+c)
⇒(x−1)y=x2(x2−x+c)
k=−1, m=2, n=2
⇒k+m+n=3