Given (x+y+1)dydx=1
⇒(x+y+1)=dxdy.......(i)
Put x+y=t........(ii)
Differentiating with respect to y, we get
⇒dxdy+1=dtdy
⇒dxdy=dtdy−1.....(iii)
Substitute equations (ii) and (iii) in equation(i), we get
⇒(t+1)=dtdy−1
⇒t+1+1=dtdy
⇒dy=1t+2dt
Integrating, we get
⇒∫dy=∫1t+2dt
⇒y=log|t+2| [Since, ∫f′(x)f(x)=logf(x)+c]
∴y=log|x+y+2| [From equation(ii)]