x+y=1,xy=2, then tan-1x+tan-1y=
π4
3π4
3π2
π2
Explanation for the correct option:
Calculate the value of the expression tan-1x+tan-1y
It is given that,
x+y=1 and xy=2
We know that, if x>0,y>0 and xy>1 then
tan-1x+tan-1y=π+tan-1x+y1-xy
⇒ tan-1x+tan-1y=π+tan-111-2
⇒ tan-1x+tan-1y=π+tan-1-1
⇒ tan-1x+tan-1y=π+-π4 ∵tan-1-1=-π4
⇒ tan-1x+tan-1y=4π-π4
⇒ tan-1x+tan-1y=3π4
Hence, the correct option is B)3π4.