(x+y)3−(x−y)3 = 6x2y+2y3
True
False
Expanding the identities and solving them
(x+y)3−(x−y)3=
(x3+y3+3x2y+3xy2)−(x3−y3−3x2y+3xy2) = y3+y3+3x2y+3x2y
=2y3+6x2y
The value of (x+2y)3 is _______.
If y = √x+√y+√x+√y+...∞ , then dydx is equal to