If x+y=3-cos4θ and x-y=4sin2θ then prove that x2+y2-8x-8y-2xy+16=0
Proof:
It is given that,
x+y=3-cos4θ⇒x+y=3-1-2sin22θ∵cos2θ=1-2sin2θ⇒x+y=2+2sin22θ...(1)
∵x-y=4sin2θ∴sin2θ=x-y4...(2)
Substitute the value of the equation (2) into the equation (1).
⇒x+y=2+2x-y42⇒x+y=2+2x2+y2-2xy16⇒x+y=2+x2+y2-2xy8⇒x+y=x2+y2-2xy+168⇒8x+8y=x2+y2-2xy+16(Crossmultiply)∴x2+y2-8x-8y-2xy+16=0
Hence, proved.