Find the value of x,y and z from the given linear equations: x+y+z=0,2x+5y+7z=0,2x−5y+3z=0
Let,
x+y+z=0....(1)
2x+5y+7z=0....(2)
2x−5y+3z=0....(3)
Adding equation (2) and (3), we get,
2x+5y+7z+2x−5y+3z=0
4x+10z=0
⇒4x=−10z
∴x=−10z4....(4)
Subtracting (3) from (2), we get,
2x+5y+7z−2x+5y−3z=0
10y+4z=0
10y=−4z
∴y=−4z10....(5)
Substituting the values of x and y in equation (1), we get,
⇒−10z4+−4z10+z=0
⇒(−104+−410+1)z=0
⇒z=0(−104+−410+1)
∴z=0
Substituting the value of z in equations (4) and (5), we get,
⇒x=0,y=0 as multiplying 0 with any non zero quantity gives us zero only.
Hence, x=y=z=0