The correct option is C
equals δ[n−2]−3δ[n−3]+2δ[n−4]−6δ[n−5]
X(z)=(1−3z−1)
Y(z)=(1+2z−2)
h[n]=x(n−1)∗y[n]
⇒H[z]=z−1X(z).Y(z)
⇒H[z]=z−1(1−3z−1)(1+2z−2)
⇒H[z]=z−1(1+2z−2−3z−1−6z−3)
⇒H[z]=(z−1−3z−2+2z−3−6z−4)
when input,
I(n)=δ[n−1] then,I[z]=z−1
Therefore output,
P(n)=h[n]∗I[n]
⇒P(z)=H(z) I(z)
P(z)=(z−1−3z−2+2z−3−6z−4)×z−1
⇒P(z)=z−2−3z−3+2z−4−6z−5
∴p(n)=δ[n−2]−3δ[n−3]+2δ[n−4]−6δ[n−5]