x2 - 2x + 3 - A = -3x2 + 4x - 9, then A =
-4x2 - 6x + 12
4x2 + 6x - 12
4x2 - 6x + 12
4x2 + 6x + 12
x2 - 2x + 3 - A = -3x2 + 4x - 9
Thus, -A = -3x2 + 4x - 9 - (x2 - 2x + 3)
-A = -3x2 + 4x - 9 - x2 + 2x - 3
-A = -4x2 + 6x - 12
Hence, A = 4x2 - 6x + 12
limx→3x2−4x+3x2−2x−3
The equation of the circle which intersects circles x2+y2+x+2y+3=0,x2+y2+2x+4y+5=0 and
x2+y2−7x−8y−9=0 at right angle, will be