The integral is given below as,
I= ∫ x 3 +x+1 x 2 −1 dx
As the given integral is not a proper fraction. Divide ( x 3 +x+1 )by ( x 2 −1 ).
x 3 +x+1 x 2 −1 =x+ 2x+1 ( x+1 )( x−1 )
Use rule of partial fraction.
2x+1 ( x+1 )( x−1 ) = A x+1 + B x−1 2x+1=A( x−1 )+B( x+1 )
Substitute x=1then,
B= 3 2
Now, substitute x=−1 then,
A= 1 2
On integrating, we get
I= ∫ x 3 +x+1 x 2 −1 dx = ∫ xdx+ ∫ 2x+1 ( x+1 )( x−1 ) dx = x 2 2 + 1 2 ∫ dx ( x+1 ) + 3 2 ∫ dx x−1 = x 2 2 + 1 2 log| x+1 |+ 3 2 log| x−1 |+C