It is give that
|a|=1
|b|=1
|c|=2
Consider,
→a×(→a×→c)+→b=0
[(a.c)a−(a.a)c]+b=0
(2cosθ)a−c=−b...........(1)
2cosθa.a=(c−b)a
2cosθ=c.a−b.a
2cosθ=2cosθa−a.b
so,a.b=0
takingequation(1)andtakingdotproductwithb
(2cosθ)a.b=(c−b).b=c.b−b.b
0=c.b−1(from(1))
b.c=1...........(2)
Squaring both sides in equation (1)
4cos2θa2=c2−b2−2b.c
4cos2θ=4+1−2(from(2))
cos2θ=34
θ=π6