wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xx2-1dydx=1, y2=0

Open in App
Solution

We have, xx2-1dydx=1 dydx=1xx2-1dy=1xx2-1dxIntegrating both sides, we getdy=1xx2-1dxy=1xx2-1dxy=1xx-1x+1dxLet 1xx-1x+1 =Ax+Bx-1+Cx+11=Ax2-1+Bx2+x+Cx2-x1=A+B+Cx2+B-Cx-AEquating the coefficients on both sides we getA+B+C=0 .....1B-C=0 .....2A=-1 .....3Solving 1, 2 and 3, we getA=-1B=12C=12y=121x-1dx-1xdx+121x+1dx=12logx-1-logx+12logx+1+C=12logx-1+12logx+1-logx+CIt is given that y2=0.0=12log2-1+12log2+1-log2+CC=log2-12log3Substituting the value of C, we gety=12logx-1+12logx+1-logx+log2-12log32y=logx-1+logx+1-2logx+2log2-log32y=logx-1+logx+1-logx2+log 4-log 32y=log4x-1x+13x2y=12log4x2-13x2Hence, y=12log4x2-13x2 is the solution to the given differential equation.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon