wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xylogxydx+(y2x2logxy)dy=0 Find y .

Open in App
Solution

xy logxydx+(y2x2logxy)dy=0
xy logxydx=(y2x2logxy)dy
dxdy=(y2x2logxy)xy logxy
dxdy=y2(1x2y2logxy)y2(xylogxy)
dxdy=(1x2y2logxy)xylogxy
put xy=v
x=vy
dxdy=v+ydvdy

putting in u , we get

v+ydvdy=(1v2log v)v log v
ydvdy=(1v log v)v log vv
ydvdy=1+v2logvv2logvvlogv
ydvdy=1vlogv
vlogv dv = - dyy

Now integrating, we have

vlogv dv = dyy

logvv22 1v.v22dv=logy+c

v22logv v2dv=logy+c

v22logvv24=logy+c

Now substitute value of v from (2)

(x/y)22logxy(x/y)24=logy + c

x22y2logxyx2y24=logy+c

2x2logxyx2=4y2(clogy)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon