putting in u , we get
Now integrating, we have
∫vlogv dv = −∫dyy
logvv22− ∫1v.v22dv=−logy+c
v22logv− ∫v2dv=−logy+c
v22logv−v24=−logy+c
Now substitute value of v from (2)
∴(x/y)22logxy−(x/y)24=−logy + c
x22y2logxy−x2y24=−logy+c
2x2logxy−x2=4y2(c−logy)