y=4 sin 3 x is a solution of the differential equation
[AI CBSE 1986]
dydx+8y=0
dydx−8y=0
d2ydx2+9y=0
d2ydx2−9y=0
Let y=4 sin 3 x⇒dydx=12 cos 3 x⇒d2ydx2=−36 sin 3x=−9×4 sin 3x=−9y⇒d2ydx2+9y=0.
The differential equation of the family of curves y=Ae3x+Be5x,where A and B are arbitrary constants, is