y=4 sin 3 x is a solution of the differential equation
[AI CBSE 1986]
dydx+8y=0
dydx−8y=0
d2ydx2+9y=0
d2ydx2−9y=0
Let y=4 sin 3 x⇒dydx=12 cos 3 x⇒d2ydx2=−36 sin 3x=−9×4 sin 3x=−9y⇒d2ydx2+9y=0.
The solution of the differential equation dydx=1+x+y+xy is [AISSE 1985; AI CBSE 1990; MP PET 2003]