We have,
y=cot−1(1−3x23x−x3);|x|>1√3
Put x=cotθ⇒θ=cot−1x
Then,
Put and we get,
y=cot−1(1−3cot2θ3cotθ−cot3θ)
y=tan−1(3cotθ−cot3θ1−3cot2θ)
=tan−1(cot3θ−3cotθ3cot2θ−1)
=tan−1cot3θ
=tan−1tan(π2−3θ)
=π2−3θ
y=π2−3cot−1x
On differentiating and we get,
dydx=ddx(π2−3cot−1x)
=(0−3(−11+x2))
=31+x2
Hence, this is the answer.