The correct option is D parabolas
y=∫cos{2tan−1√1−x1+x}dx
Taking u=tan−1√1−x1+x
tanu=√1−x1+x
(1+x)tan2u=1−x
x=1−tan2u1+tan2u=cos2u
dx=−2sin2u du
∴y=∫cos2u(−2sin2u) du
=−∫sin4u du
=cos4u4+c
cos4u=2cos22u−1=2x2−1
⇒y=x22+c which represents the family of parabolas.