wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

y=tanxtanxtanx , then at x=π4 , the value of dydx=


A

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

2


Explanation for the correct option:

Step 1: Finding the first derivative

The given equation is,

y=tanxtanxtanx

Take log on both sides

logy=tanxlogtanxtanx logax=xloga

logy=tan2xlogtanx

Differentiate both sides with respect to x, we get

ddxlogy=ddxtan2xlogtanx ddxfxgx=f'xgx+fxg'x

1ydydx=2tanxsec2xlogtanx+tan2x1tanxsec2x ddxtan2x=2tanxsec2x,ddxlogtanx=1tanxsec2x

1ydydx=2tanxsec2xlogtanx+tanxsec2x

dydx=y2tanxsec2xlogtanx+tanxsec2x

Step 2: Finding the value of dydx at x=π4

Substitute x=π4 in the above differential equation.

dydx=y2tanπ4sec2π4logtanπ4+tanπ4sec2π4

dydx=y2122log1+122 tanπ4=1,secπ4=2

dydx=y2120+12 log1=0

dydx=y0+2

dydx=2y .......1

At x=π4, the value of y is,

y=tanπ4tanπ4tanπ4

y=111 tanπ4=1

y=1

So, from the equation 1, we get

dydx=21

dydx=2

Hence, the correct option is C)2.


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon