Consider the given deferential equation,
ydydx=1+y2
y1+y2dy=dx
2y2(1+y2)dy=dx
Taking integration both sides,
∫2y2(1+y2)dy=∫1dx
12∫2y(1+y2)dy=∫1dx
12log(1+y2)=x+C
log(1+y2)12=x+C
log√(1+y2)=x+C
Hence, this is the answer.