Given,
y(dydx)2+y=2xydydx
substitute dydx=p
yp2+y=2xyp
⇒y=2xy−2yp.....(1)
using Clairaut's equation, differentiate both sides of (1) w.r.t p
dydp=2xy−2yp
To find the solution, set dydp=0
0=2xy−2yp
∴p=x
substitute the value of p in equation (1)
y=2x2y−yx2
∴y=xy
is the required equation.