Given,
y(xcos(yx)+ysin(yx))dx=x(ysin(yx)−xcos(yx))dy=0
dydx=yx(xcos(yx)+ysin(yx))x(ysin(yx)−xcos(yx))
substitute y=vx→dydx=xdvdx+v
xdvdx+v=v(xcosv+vxsinvvxsinv−xcosv)
xdvdx+v=(vcosv+v2sinvvsinv−cosv)
xdvdx=(vcosv+v2sinvvsinv−cosv)−v
xdvdx=vcosv+v2sinv−v2sinv−vcosvvsinv−cosv
xdvdx=0
dvdx=0
1xdydx−yx=0