wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

y=tan1(1+x2+1x21+x21x2),x2<1, then find dydx.

    Open in App
    Solution

    y=tan1(1+x2+1x21+x21x2),x2<1
    dydx=11+(1+x2+1x21+x21x2)2.ddx(1+x2+1x21+x21x2)
    dydx=(1+x21x2)2(1+x21x2)2+(1+x21x2)2.ddx(1+x2+1x21+x21x2)
    ddx(1+x2+1x21+x21x2)=(1+x21x2).(2x21+x22x21x2)(1+x21x2).(2x21+x2+2x21x2)(1+x21x)2
    Here Numerator =x[(1+x21x2)(11+x211+x2)(1+x21x2)(11+x2+11+x2)]
    =x[(11+x21x21x21+x2+1)(1+1+x21x2+1x21+x2+1)]
    =x[11+x21x21x21+x2+111+x21x2+1x21+x21]
    Numerator =2x=x(1+x21x2+1x21+x2)
    Now,
    dydx=(1+x21x2)2(1+x21x2)2+(1+x2+1x2)2×2x(1+x21x2+1+x21+x2)(1+x21x2)2=
    dydx=(1+x2)(1x2)(1+x2)(1x2)+(1+x2)(1x2)=4x(1+x2)(1x2)(1+x2)(1x2)2(1+x2)(1x2)+(1+x2)(1x2)+2(1+x2)(1x2)dydx=4x4(1+x2)(1x2)dydx=x(1+x2)(1x2)

    flag
    Suggest Corrections
    thumbs-up
    0
    Join BYJU'S Learning Program
    similar_icon
    Related Videos
    thumbnail
    lock
    L'hospitals Rule
    MATHEMATICS
    Watch in App
    Join BYJU'S Learning Program
    CrossIcon