y=tan−1(√1+x2+√1−x2√1+x2−√1−x2),x2<1
dydx=11+(√1+x2+√1−x2√1+x2−√1−x2)2.ddx(√1+x2+√1−x2√1+x2−√1−x2)
dydx=(√1+x2−√1−x2)2(√1+x2−√1−x2)2+(√1+x2−√1−x2)2.ddx(√1+x2+√1−x2√1+x2−√1−x2)
ddx(√1+x2+√1−x2√1+x2−√1−x2)=(√1+x2−√1−x2).(2x2√1+x2−2x2√1−x2)−(√1+x2−√1−x2).(2x2√1+x2+2x2√1−x2)(√1+x2−√1−x)2
Here Numerator =x[(√1+x2−√1−x2)(1√1+x2−1√1+x2)−(√1+x2−√1−x2)(1√1+x2+1√1+x2)]
=x[(1−√1+x21−x2−√1−x21+x2+1)−(1+√1+x21−x2+√1−x21+x2+1)]
=x[1−√1+x21−x2−√1−x21+x2+1−1−√1+x21−x2+√1−x21+x2−1]
Numerator =−2x=x(√1+x21−x2+√1−x21+x2)
Now, dydx=(√1+x2−√1−x2)2(√1+x2−√1−x2)2+(√1+x2+√1−x2)2×−2x(√1+x21−x2+√1+x21+x2)(√1+x2−√1−x2)2=
dydx=√(1+x2)(1−x2)√(1+x2)(1−x2)+√(1+x2)(1−x2)=4x√(1+x2)(1−x2)(1+x2)(1−x2)−2√(1+x2)(1−x2)+(1+x2)(1−x2)+2√(1+x2)(1−x2)dydx=−4x4√(1+x2)(1−x2)∴dydx=−x√(1+x2)(1−x2)