As per question, y∝√x⇒y=k√x⋯⋯⋯⋯ (1)
(where k= non-zero variation constant)
When x=9,y=9,∴9=k√9 [by(1)]
or, 9=k.3 or, k=93=3.
∴ from (1) we get, y=3√x....(2)
Now, when y=6, from (2) we get, 6=3√x
or, √x=63=2
or, x=(2)2=4 [Squaring both the sides]
∴ The required value of x=4.