We have,
y=x[(cosx+sinx)(cosx−sinx)+sinx]+12√x
=x[(cos2x−sin2x)+sinx]+12√x
=x[cos2x+sinx]+12√x
=xcos2x+xsinx+12√x
On differentiating and we get,
dydx=xddxcos2x+cos2xdxdx+xddxsinx+sinxdxdx+12×(−12)x−32
=2x(−sin2x)+cos2x+xcosx+sinx−14x−32
=−2xsin2x+cos2x+xcosx+sinx−14x32
On reciprocal and we get,
dxdy=1−2xsin2x+cos2x+xcosx+sinx−14x32
Hence, this is the answer.