    Question

# You want to compare the number of words per sentence in a sports magazine to the number of words per sentence in a political magazine The data represent random samples of the number of words in 10 sentences from each magazine. Compare the samples using measures of center and variation. Can you use the data to make a valid comparison about the magazines? Explain.Sports magazine: 9, 21, 15, 14, 25, 26, 9, 19, 22, 30Political magazine: 31, 22, 17, 5, 23, 15, 10, 20, 20, 17

Open in App
Solution

## Step 1: $\mathrm{Data}\mathrm{of}\mathrm{sports}\mathrm{magzine}=9,21,15,14,25,26,9,19,22,30\phantom{\rule{0ex}{0ex}}\mathrm{Order}:91415192122252630\phantom{\rule{0ex}{0ex}}\mathrm{Median}\mathrm{of}\mathrm{Sports}\mathrm{magzine}=21\phantom{\rule{0ex}{0ex}}\mathrm{Mean}\mathrm{of}\mathrm{Sports}\mathrm{magzine}=9+21+15+14+25+26+9+19+22+30÷10=190÷10=19\phantom{\rule{0ex}{0ex}}\mathrm{Variation}\mathrm{of}\mathrm{Sports}\mathrm{magzine}={\left(9-19\right)}^{2}+{\left(21-19\right)}^{2}+{\left(15-19\right)}^{2}+{\left(14-19\right)}^{2}+{\left(25-19\right)}^{2}+{\left(26-19\right)}^{2}+{\left(9-19\right)}^{2}+{\left(19-19\right)}^{2}+{\left(22-19\right)}^{2}+{\left(30-19\right)}^{2}÷10={\left(-10\right)}^{2}+{\left(2\right)}^{2}+{\left(-4\right)}^{2}+{\left(-5\right)}^{2}+{\left(6\right)}^{2}+{\left(7\right)}^{2}+{\left(-10\right)}^{2}+{\left(0\right)}^{2}+{\left(3\right)}^{2}+{\left(11\right)}^{2}÷10\phantom{\rule{0ex}{0ex}}=100+4+16+25+36+49+100+0+9+121÷10\phantom{\rule{0ex}{0ex}}=460÷10\phantom{\rule{0ex}{0ex}}=46\phantom{\rule{0ex}{0ex}}$Step 2:$\mathrm{Data}\mathrm{of}\mathrm{Political}\mathrm{magzine}=31,22,17,5,23,15,10,20,20,17\phantom{\rule{0ex}{0ex}}\mathrm{Order}:510151720222331\phantom{\rule{0ex}{0ex}}\mathrm{Median}\mathrm{of}\mathrm{Political}\mathrm{magzine}=17+20÷2=37÷2=13.5\phantom{\rule{0ex}{0ex}}\mathrm{Mean}\mathrm{of}\mathrm{Political}\mathrm{magzine}=31+22+17+15+23+15+10+20+20+17÷10\phantom{\rule{0ex}{0ex}}=180÷10\phantom{\rule{0ex}{0ex}}=18$Step 3: $\mathrm{Variation}\mathrm{of}\mathrm{Sports}\mathrm{magzine}={\left(31-18\right)}^{2}+{\left(22-18\right)}^{2}+{\left(17-18\right)}^{2}+{\left(5-18\right)}^{2}+{\left(23-18\right)}^{2}+{\left(15-18\right)}^{2}+{\left(10-18\right)}^{2}+{\left(20-18\right)}^{2}+{\left(20-18\right)}^{2}+{\left(17-18\right)}^{2}÷10\phantom{\rule{0ex}{0ex}}={\left(13\right)}^{2}+{\left(4\right)}^{2}+{\left(-1\right)}^{2}+{\left(-13\right)}^{2}+{\left(5\right)}^{2}+{\left(-3\right)}^{2}+{\left(-8\right)}^{2}+{\left(2\right)}^{2}+{\left(2\right)}^{2}+{\left(-1\right)}^{2}÷10\phantom{\rule{0ex}{0ex}}=169+16+1+169+25+9+4+4+1÷10\phantom{\rule{0ex}{0ex}}=462÷10\phantom{\rule{0ex}{0ex}}=46.2\phantom{\rule{0ex}{0ex}}$Final Answer: Variation of Sports magazine is having greater measure in variation and Median of Sports magazine is having greater value of center.  Suggest Corrections  0      Similar questions
Join BYJU'S Learning Program
Select...  Related Videos   Averages
MATHEMATICS
Watch in App  Explore more
Join BYJU'S Learning Program
Select...