wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

|yуг9.zx =(x-y) (y-z) (z-x) (xy + yz + zr)

Open in App
Solution

The given left hand side determinant is,

Δ=| x x 2 yz y y 2 zx z z 2 xy |

Apply row operation R 1 R 1 R 2 ,

Δ=| xy x 2 y 2 yzzx y y 2 zx z z 2 xy | =( xy )| 1 x+y z y y 2 zx z z 2 xy |

Apply row operation R 2 R 2 R 3 ,

Δ=( xy )| 1 x+y z yz y 2 z 2 zxxy z z 2 xy | =( xy )( yz )| 1 x+y z 1 y+z x z z 2 xy |

Apply row operation R 1 R 1 R 2 ,

Δ=( xy )( yz )| 11 x+yyz z+x 1 y+z x z z 2 xy | =( xy )( yz )| 0 xz z+x 1 y+z x z z 2 xy | =( xy )( yz )( zx )| 0 1 1 1 y+z x z z 2 xy |

Apply column operation C 2 C 2 C 3 ,

Δ=( xy )( yz )( zx )| 0 1+1 1 1 y+z+x x z z 2 xy xy | =( xy )( yz )( zx )| 0 0 1 1 y+z+x x z z 2 xy xy |

Expand along R 1 ,

Δ=( xy )( yz )( zx )[ 00 z 2 +xy+zx+zy+ z 2 ] =( xy )( yz )( zx )( xy+zx+zy )

Hence, the left hand side of the determinant is equal to the right hand side.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon