z1 and z2 are the roots of the equation z2−az+b=0, where |z1|=|z2|=1 a, b are nonzero complex numbers, then
A
|a|≤1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
|a|≤2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
arg(a2)=arg(b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
arg a = arg (b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are B|a|≤2 C arg(a2)=arg(b) z2−az+b=0 ...(1) z1&z2 where |z1|=|z2|=1 Sum of roots of the equation (1)=z1+z2=a Products of the roots of the equation (1)=z1z2=b |z1+z2|≤|z1|+|z2|⇒|a|≤1+1⇒|a|≤2 Let z1=cosA+isinA&z2=cosB+isinB arg(ab)=arg(z1+z2z1z2)=arg(cosA+isinA+cosB+isinB(cosA+isinA)(cosB+isinB)) ⇒arg(ab)=arg(cosA+cosB+isinA+isinBcos(A+B)+isin(A+B)) ⇒arg(ab)=arctan(sinA+sinBcosA+cosB)arctan(sin(A+B)cos(A+B))=arctan(sinA+sinBcosA+cosB)A+B ⇒arg(ab)=arctan⎛⎜
⎜
⎜
⎜⎝2sin(A+B2)cos(A−B2)2cos(A+B2)cos(A−B2)⎞⎟
⎟
⎟
⎟⎠A+B=arctan(tan(A+B2))A+B ⇒arg(ab)=A+B2(A+B)=12 ∴arg(a2)=argb Hence, options 'B' and 'C' are correct.