wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

z1 and z2 are the roots of the equation z2az+b=0, where |z1|=|z2|=1 a, b are nonzero complex numbers, then

A
|a|1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
|a|2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
arg(a2)=arg(b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
arg a = arg (b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B |a|2
C arg(a2)=arg(b)
z2az+b=0 ...(1)
z1&z2 where |z1|=|z2|=1
Sum of roots of the equation (1)=z1+z2=a
Products of the roots of the equation (1)=z1z2=b
|z1+z2||z1|+|z2||a|1+1|a|2
Let z1=cosA+isinA&z2=cosB+isinB
arg(ab)=arg(z1+z2z1z2)=arg(cosA+isinA+cosB+isinB(cosA+isinA)(cosB+isinB))
arg(ab)=arg(cosA+cosB+isinA+isinBcos(A+B)+isin(A+B))
arg(ab)=arctan(sinA+sinBcosA+cosB)arctan(sin(A+B)cos(A+B))=arctan(sinA+sinBcosA+cosB)A+B
arg(ab)=arctan⎜ ⎜ ⎜ ⎜2sin(A+B2)cos(AB2)2cos(A+B2)cos(AB2)⎟ ⎟ ⎟ ⎟A+B=arctan(tan(A+B2))A+B
arg(ab)=A+B2(A+B)=12
arg(a2)=argb
Hence, options 'B' and 'C' are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon