wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

z1,z2,z3 are three complex numbers whose moduli area,b,c respectively and are such that ∣ ∣abcbcacab∣ ∣=0.
If z1z2, then prove that arg(z3z1z2z1)2=arg(z3z2)

Open in App
Solution

The given determinant is a circulant which when expanded gives 3abca3b3c3=0
or (a+b+c)(a2+b2+c2abbcca)=0
or 12(a+b+c)[(ab)2+(bc)2+(ca)2]=0
Since a+b+c being the sum of moduli cannot be zero and hence we must have
(ab)2=0ab=0,bc=0,ca=0
or a=b=c or |z1|=|z2|=|z3|=r say
Let z1=reiθ1,z2=reiθ2,z3=reiθ3,
Now z3z1z2z1
=(cosθ3+isinθ3)(cosθ1+isinθ1)(cosθ2+isinθ2)(cosθ1+isinθ1)
=(cosθ3cosθ1)+i(sinθ3sinθ1)(cosθ2cosθ1)+i((sinθ2sinθ1))
=2sinθ3+θ12sinθ1θ32+i2sinθ3θ12cosθ3+θ122sinθ2+θ12sinθ1θ22+2isinθ2θ12cosθ2+θ12
Now, sinθ1θ32=sinθ3θ12=i2sinθ3θ12
=2sinθ3θ12[cosθ3+θ12+isinθ3+θ12]2sinθ2θ12[cosθ3+θ12+isinθ3+θ12]
=sinθ3θ12sinθ2θ12e[iθ3+θ12θ2+θ12]
or =z3z1z2z1=keiθ3θ22
(z3z1z2z1)2k2ei(θ3θ22)2=k2ei(θ3θ2)
(eix)2=ei2x
arg(z3z1z2z1)2=θ3θ2
=arg z3arg z2=arg(z3z2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon