The given determinant is a circulant which when expanded gives 3abc−a3−b3−c3=0
or (a+b+c)(a2+b2+c2−ab−bc−ca)=0
or 12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0
Since a+b+c being the sum of moduli cannot be zero and hence we must have
∑(a−b)2=0⇒a−b=0,b−c=0,c−a=0
or a=b=c or |z1|=|z2|=|z3|=r say
∴ Let z1=reiθ1,z2=reiθ2,z3=reiθ3,
Now z3−z1z2−z1
=(cosθ3+isinθ3)−(cosθ1+isinθ1)(cosθ2+isinθ2)−(cosθ1+isinθ1)
=(cosθ3−cosθ1)+i(sinθ3−sinθ1)(cosθ2−cosθ1)+i((sinθ2−sinθ1))
=2sinθ3+θ12sinθ1−θ32+i2sinθ3−θ12cosθ3+θ122sinθ2+θ12sinθ1−θ22+2isinθ2−θ12cosθ2+θ12
Now, sinθ1−θ32=−sinθ3−θ12=i2sinθ3−θ12
=2sinθ3−θ12[cosθ3+θ12+isinθ3+θ12]2sinθ2−θ12[cosθ3+θ12+isinθ3+θ12]
=sinθ3−θ12sinθ2−θ12e[iθ3+θ12−θ2+θ12]
or =z3−z1z2−z1=keiθ3−θ22
∴(z3−z1z2−z1)2k2⎡⎢⎣ei(θ3−θ22)⎤⎥⎦2=k2ei(θ3−θ2)
∵(eix)2=ei2x
∴arg(z3−z1z2−z1)2=θ3−θ2
=arg z3−arg z2=arg(z3z2)