z2n−1z2n+1=cis2nθ−1cis2nθ+1
=cis(2nθ)−1cis(2nθ)+1 (∵cisa(θ)=cis(aθ))
=cos(2nθ)−1+isin(2nθ)cos(2nθ)+1+isin(2nθ)×cos(2nθ)−1−isin(2nθ)cos(2nθ)−1−isin(2nθ)
=(cos(2nθ)−1)2−(isin(2nθ))2(cos(2nθ)+1)(cos(2nθ)−1)+isin(2nθ)(cos(2nθ)−1)−isin(2nθ)(cos(2nθ)+1)−(isin(2nθ))2
=cos2(2nθ)−2cos(2nθ)+1+sin2(2nθ)cos2(2nθ)−1+isin(2nθ)(cos(2nθ)−1−(cos(2nθ)+1))+sin2(2nθ)
=2−2cos(2nθ)1−1−2isin(2nθ)
=i1−cos(2nθ)sin(2nθ)
=i cosec(2nθ)−icot(2nθ)