1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Conjugate of a Complex Number
z=e i + i 2...
Question
z
=
e
i
+
i
2
, find
|
z
|
=
?
argument =?
Open in App
Solution
e
i
+
i
2
=
e
i
−
1
=
e
i
e
1
z
=
1
e
[
cos
1
+
i
sin
1
]
[By demonrier theorem
e
i
θ
=
cos
θ
+
i
sin
θ
]
|
z
|
=
1
e
√
cos
2
1
+
sin
2
1
|
z
|
=
1
e
T
a
n
α
=
sin
1
cos
1
=
T
a
n
1
α
=
1
radian
=
57.29
o
[
∵
2
π
radians is
180
∘
]
1
radian is
180
∘
2
π
Suggest Corrections
0
Similar questions
Q.
If
z
=
−
i
(
9
+
i
)
2
−
i
.
Find the principal argument and
|
z
|
.
Q.
Find the argument and the principal value of the argument of the complex number
z
=
2
+
i
4
i
+
(
1
+
i
)
2
,
where
i
=
√
−
1
Q.
If
z
=
(
1
+
i
)
(
1
+
2
i
)
(
1
+
3
i
)
…
…
…
(
1
+
n
i
)
(
1
−
i
)
(
2
−
i
)
(
3
−
i
)
…
…
…
(
n
−
i
)
, where
i
=
√
−
1
,
n
∈
N
, then principal argument of
z
can be -
Q.
If
|
z
−
1
+
i
|
+
|
z
+
i
|
=
1
then find range of principle argument of z.
Q.
Arguments of Z =
(
2
+
i
)
[
4
i
+
(
1
+
i
)
2
]
is :