Z is rotated through an angle of anticlockwise to get z1 and clockwise to get z2, then
, z, are in GP
+ = 2 z cos
+ = 2 cos(2 )
We will first find the complex number z1 and z2 using the concept of rotation.
z1z = eiα and z2z = e−iα
⇒ z1 = zeiα , z2 = ze−iα
z1z2 = zeiα × ze−iα
⇒ z1 ,z ,z2 are in g.p - a
z1 + z2 = zeiα + ze−iα
= z ( eiα + e−iα )
= z(cosα+isinα+cosα−isinα)
= 2zcosα - Option C
z21 + z22 = z2(e−iα)2 + z2(e−iα)2
= z2(ei2α + e−i2α)
= 2 Z2cos 2 α - Option D