The correct option is B 2a≥|z1−z2|2
|z−z1|2+|z−z2|2=a
⇒(z−z1)(¯z−¯z1)+(z−z2)(¯z−¯z2)=a
⇒2z¯z−z(¯z1+¯z2)−¯z(z1+z2)+z1¯z1+z2¯z2=a
⇒z¯z−(¯z1+¯z22)z−(z1+z22)¯z+z1¯z1+z2¯z2−a2=0....(1)
Let's compare it with the general equation of the circle
|z−α|=r⇒|z−α|2=r2⇒|z|2−z¯α−α¯z+|α|2−r2=0.....(2)
From (1) and (2)
⇒α=z1+z22 & |α|2−r2=z1¯z1+z2¯z2−a2
Now r2≥0
⇒(z1+z2)(¯z1+¯z2)4≥z1¯z2+z2¯z2−a2
⇒z1¯z1+z1¯z2+¯z1z2+z2¯z2≥2(z1¯z1+z2¯z2)−2a
⇒2a≥z1¯z1+z2¯z2−z1¯z2−¯z1z2
⇒2a≥z1(¯z1−¯z2)−z2(¯z1−¯z2)
⇒2a≥(z1−z2)(¯z1−¯z2)
⇒2a≥(z1−z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−z2)
⇒2a≥|z1−z2|2