wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1tan3A-tanA-1cot3A-cotA=Kcot2A. Find the value of K.


Open in App
Solution

Find the value of K.

It is given that

1tan3A-tanA-1cot3A-cotA=Kcot2A1sin3Acos3A-sinAcosA-1cos3Asin3A-cosAsinA=Kcot2AtanA=sinAcosA,cotA=cosAsinA1sin3AcosA-sinAcos3Acos3AcosA-1cos3AsinA-cosAsin3Asin3AsinA=Kcot2Acos3AcosAsin3AcosA-sinAcos3A-sin3AsinAcos3AsinA-cosAsin3A=Kcot2Acos3AcosAsin3A-A-sin3AsinAsinA-3A=Kcot2AsinA+B=sinAcosB-sinBcosAcos3AcosAsin2A-sin3AsinAsin-2A=Kcot2Acos3AcosAsin2A+sin3AsinAsin2A=Kcot2Asin-A=-sinAcos3AcosA+sin3AsinAsin2A=Kcot2Acos3A-Asin2A=Kcot2AcosA-B=cosAcosB-sinAsinBcos2Asin2A=Kcot2Acot2A=Kcot2AK=cot2Acot2AK=1

Hence, the value of K is 1.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon