63a2-112b2. How do we factorize this using a suitable identity?
7(3a–4b)(3a+4b)
7(3a+b)(a–4b)
(3a–4b)(3a–4b)
(3a–4b)(3a+4b)
Explanation of correct option-
We have-
63a2-112b2=7(9a2–16b2)
=7[(3a)2–(4b)2] Using a2 – b2 = (a – b)(a + b)
=7(3a–4b)(3a+4b)
Hence, option a is correct
Factorise :
63a2−112b2
Factorise