A Factory Has Two Machines A And B. Past Record Shows That Machine A Produced 60% Of The Items Of Output And Machine B Produced 40% Of The Items. Further, 2% Of The Items Produced By Machine A Were Defective And 1% Produced By Machine B Were Defective. All The Items Are Put Into One Stockpile And Then One Item Is Chosen At Random From This And Is Found To Be Defective. What Is The Probability That It Was Produced By Machine B?


E1 and E2 be the respective events of items produced by machines A and B.

Let X be the event that the produced item was found to be defective.

The Probability of items produced by machine\( A, P(E_{1}) = 60% = \frac{3}{5}\)

The Probability of items produced by machine\( A, P(E_{2}) = 40% = \frac{2}{5}\)

The probability that machine A produced defective items,\(P(X \mid E_{1}) = 2% = \frac{2}{100}\)

The probability that machine B produced defective items,\(P(X \mid E_{2}) = 1% = \frac{1}{100}\)

The probability that the randomly selected item was from machine B, given that it is defective, is given by P (E2 /mid X)

By using Baye’s theorem, we obtain:

\(P (E_{2}\mid X) = \frac{P(E_{2})*P(X\mid E_{2})}{P(E_{1}) * P(X \mid E_{1}) * P(X \mid E_{2})}\\\Rightarrow \frac{\frac{2}{5} * \frac{1}{100}}{\frac{3}{5}*\frac{2}{100} + \frac{2}{5} * \frac{1}{100}}\\\Rightarrow \frac{\frac{2}{500}}{\frac{5}{500} + \frac{2}{500}}\\\Rightarrow \frac{2}{8}\\\Rightarrow \frac{1}{4} = 0.25\)

Therefore, the probability that it was produced by machine B is 0.25.

Explore more such questions and answers at BYJU’S.

Was this answer helpful?


0 (0)


Choose An Option That Best Describes Your Problem

Thank you. Your Feedback will Help us Serve you better.

Leave a Comment

Your Mobile number and Email id will not be published. Required fields are marked *




Free Class