Determine the smallest positive value of x (in degrees) for which tanx+100°=tanx+50°tanxtanx-50°.
30°
45°
60°
75°
Finding the smallest positive value of x
tanx+100°=tanx+50°tanxtanx-50°
tanx+100°tanx-50°=tanx+50°tanx
sinx+100°cosx-50°cosx+100°sinx-50°=sinx+50°sinxcosx+50°cosx
Applying componendo and dividendo we get,
sin2x+50°sin150°=-cos50°cos2x+50°
sin2x+50°×cos2x+50°=-cos50°×sin150°
sin4x+100°=-sin40°
sin4x+100°=sin-40°
4x+100°=-40° {If siny=sinx⇒y=x}
4x+100°=πn-(-1)n40°
Substitute n=1, smallest positive value of x is given by,
4x=120°
x=30°
Hence, option A is correct.
Determine the smallest positive value of x (in degrees) for which tan (x+100∘)=tan(x+50∘)tan x tan (x−50∘).
Prove that cos 7x−cos 8x1+2 cos 5x=cos 2x−cos 3x