Divide as directed: x(x+1)(x+2)(x+3)÷x(x+1)
Here,
=x(x+1)(x+2)(x+3)x(x+1)=x(x+1)x(x+1)×(x+2)(x+3)=1×(x+2)(x+3)=(x+2)(x+3)
Thus.
x(x+1)(x+2)(x+3)÷x(x+1) is (x+2)(X+3)
Divide as directed.
(i)5(2x+1)(3x+5)÷(2x+1)
(ii)26xy(x+5)(y−4)÷13x(y−4)
(iii)52pqr(p+q)(q+r)(r+p)÷104pq(q+r)(r+p)
(iv)20(y+4)(y2+5y+3)÷5(y+4)
(v)x(x+1)(x+2)(x+3)÷x(x+1)