Evaluate 1+2x+3x2+4x3+..... upto infinity, where x<1.
Let S=1+2x+3x2+4x3+.....1
Multiply both sides by x
xS=1x+2x2+3x3+4x4+.....2
Subtract 2 from 1
1-2S-xS(1+2x+3x2+4x3+.....)-(1x+2x2+3x3+4x4+.....)(1+x+x2+x3+.....)∴S-xS=(1+x+x2+x3+.....)S1-x=(1+x+x2+x3+.....)
But (1+x+x2+x3+.....) is infinite GP which is equal to GP=a1-r
Where a=1,r=x
⇒S1-x=11-xS=11-x2
Hence, 1+2x+3x2+4x3+..... upto infinity, where x<1 is 11-x2