wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express cos2x in terms of tanx.


Open in App
Solution

Step 1 : Apply the identity of cos2θ

As we know the identity cos2θ=cos2θ-sin2(θ)

so, substituting θ=x,

cos(2x)=cos2(x)-sin2(x)

Now,

cos(2x)=cos2(x)-sin2(x)1cos(2x)=cos2(x)-sin2(x)cos2(x)+sin2(x)cos2(x)-sin2(x)=1

Step 2: Divide the numerator and denominator by cos2(x)

dividing the numerator and denominator by cos2(x)

cos(2x)=cos2(x)cos2(x)-sin2(x)cos2(x)cos2(x)cos2(x)+sin2(x)cos2(x)cos(2x)=1-tan2x1+tan2x

Hence, cos2xin terms of tanx is cos2x=1-tan2x1+tan2x.


flag
Suggest Corrections
thumbs-up
45
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon