Express cos2x in terms of tanx.
Step 1 : Apply the identity of cos2θ
As we know the identity cos2θ=cos2θ-sin2(θ)
so, substituting θ=x,
cos(2x)=cos2(x)-sin2(x)
Now,
cos(2x)=cos2(x)-sin2(x)1cos(2x)=cos2(x)-sin2(x)cos2(x)+sin2(x)cos2(x)-sin2(x)=1
Step 2: Divide the numerator and denominator by cos2(x)
dividing the numerator and denominator by cos2(x)
cos(2x)=cos2(x)cos2(x)-sin2(x)cos2(x)cos2(x)cos2(x)+sin2(x)cos2(x)cos(2x)=1-tan2x1+tan2x
Hence, cos2xin terms of tanx is cos2x=1-tan2x1+tan2x.
Express tanθ in terms of cosθ.