Express each of the following as a single logarithm: 12log36+2log8-log1.5.
Simplify the expression.
Given expression is 12log36+2log8-log1.5
∴12log36+2log8-log1.5=12log62+2log23-log1510=log6+6log2-log1510[∵logan=nloga]=log2×3+6log2-log32=log2+log3+6log2-log3+log2[∵logab=loga+logb,logab=loga-logb]=8log2
Hence, the required single logarithm is 8log(2).
Express as a single logarithm
2+12log109−2log105