Factorise : a–b–a2+b2
(a-b)1-(a+b)
(a+b)1-(a-b)
(a-b)1-(a-b)
none of these
Explanation for correct option:
Factorise the polynomial
a–b–a2+b2=a-b-1(a2-b2)
using the identity x2-y2=(x+y)(x-y)
=a-b-(a-b)(a+b)=(a-b)1-(a+b)
Hence, the factors of a–b–a2+b2 are (a-b) and (1-(a+b)).
Therefore, Option A is correct.
Question 92 (xxvi)
Factorise the following using the identity a2−b2=(a+b)(a−b).
(a−b)2−(b−c)2
Factorise: 1+2ab−(a2+b2)
Factorise : a2+4a+4−b2
Factorise : (a2−b2) c+(b2−c2)a